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Full-Wave Design and Realization of Multicoupled
Dual-Mode Circular Waveguide Filters

José R. Montejo-Garai and Juan Zapata, Member, IEEE

Abstract—A. pew full-wave method for the design and real-
ization of dual-mode circular waveguide filters is presented. The
rigorous CAD is a combination of the mode-matching and the
finite-element techmiques, which permits obtaining the Gener-
alized Scattering Matrix for all the blocks that compose the
structure (rectangular slots, cross-irises, and screws). The finite
thickness of the irises, the higher order mode interaction, as
well as the coupling and tuning screws are rigorously taken into
account. A systematic design process for the different elements
will be described. A full prediction of resonant out-of-band
spurious is accomplished prior to the filter construction. Special
attention is devoted to the circuital model in order to save a
great deal of computational effort in the final adjustment. A four-
pole elliptic circular waveguide cavity filter has been designed
and constructed. The experimental filter results show excellent
agreement with theory.

I. INTRODUCTION

HE GROWING demand for available channels in satellite

communication systems during the last decades has led
to the design of microwave filters having sophisticated transfer
functions. The necessity of providing small guard band, linear
phase, as well as high selectivity between adjacent channels
has forced introduction of finite transmission zeros. This makes
it possible to improve the out-of-band amplitude characteristic
in contrast to the pure Chebyshev or Butterworth (all-pole)
response or to obtain self-equalized responses. Furthermore,
the reduction of scarce resources on a spacecraft, like weight
and volume has been a constant over the years. All the
previously considered requirements are performed by the dual-
mode structure.

As is well-known, a cavity can support an infinite number
of electromagnetic field configurations or modes. Based on
this idea, Ragan [1] suggested the possibility of building a
circular waveguide filter with two degenerate modes. Lin [2]
extended the above design using five degenerate modes. In
1970, Williams [3] designed the first longitudinal multimode
four-order elliptic filter with two dual-mode cavities. From
the seventies onward, a great effort was dedicated to the
development of the theory and feasibility of the dual-mode
filters [4]-[6]. Later on, asymmetric realization [7] and triple
mode configuration were carried out.

However, in spite of the progress made in multimode filters
during the last years, some design troubles have not been
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solved yet. For example, to obtain the coupling value of slots
and cross-irises between cavities, it is necessary to resort to
approximate models. Bethes’ theory of diffraction by small
holes along with Cohn’s polarizability measurement diagrams
are presently employed [9]. Nevertheless, an important number
of corrections have been introduced over the initial models in
order to improve them [10]-[12]:

1) the first correction factor concerns the influence of the
iris resonance effect on the coupling;

2) the second one takes into account the finite iris thickness;
and

3) the third one considers the variations of the incident
electromagnetic fields within the aperture region.

Additionally, a closed-form formula has been recently de-
rived for the normalized susceptance of a general aperture
discontinuity in the transverse plane of a circular waveguide
as a function of the aperture polarizability [13].

Although the above considerations have improved the cal-
culation of the coupling coefficients, the experience indicates
that their accuracy is not sufficient. For this reason, different
sized slots and cross-irises have to be built prior to the final
prototype. In addition, the coupling between the degenerate
modes in the same cavity provided by the screw inserted
at a 45° angle has never been considered. The same occurs
with tuning screws. Consequently, despite the improvement
of approximated methods, the final design and adjustment of
dual-mode filters are, even in our days, really prolix tasks. The
manufacturing is also an extremely expensive process.

The aim of this paper is to present a new rigorous systematic
design procedure for circular waveguide dual-mode filters.
As a consequence of this process, the manufacturing cost
is lowered, and the final adjustment and tuning time is also
reduced. The procedure is a combination of full-wave methods
and circuital models. This mixture joins the power of full-wave
techniques and the information provided by simplified circuits.
As a result, an efficiency CAD has been developed.

II. FULL-WAVE METHOD

The proposed full-wave technique is a combination of the
mode-matching and the finite-element techniques (MM-FEM)
[14]. The waveguide structure under study can be considered
as the comnection of two kinds of blocks. The first block
[Fig. 1(a)] is composed of two arbitrarily shaped waveguide
sections linked through an arbitrarily shaped iris. This generic
sketch represents the coupling arising between waveguides in
dual-mode filters. In the case of dual-mode circular wave-
guide filters (DMCWF’s), this sketch is particularized for
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two situations. For the input and output couplings, the input
waveguide is rectangular, and the output one is circular. For
intercavity coupling, both waveguides are circular. The second
block [Fig. 1(b)] is a circular waveguide length with three
screws inside. The screw tilted 45° couples the two degenerate
modes, while the other two screws are tuning each mode
independently. Therefore, applying the combined MM-FEM
to the elements mentioned above, their Generalized Scattering
Matrixes (GSM’s) are obtained. These GSM’s rigorously take
into account the finite thicknesses of the irises and the screws
and the higher order mode interactions. Accordingly, any
n-order DMCWEF can be considered as a cascade of the
previously described blocks.

For the derivation of the GSM’s, every block is divided into
simple discontinuities between waveguides of different cross-
sections. At both sides of the discontinuity, the electromagnetic
field can be expressed as
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al,bl,all, b are the unknown complex amplitudes of the

forward and backward waves in z direction at both sides
of the discontinuity. +,~}' are the propagation constants.
& hle '?I, R are the transverse electrical and magnetic com-
ponents in each side of the discontinuity. If the cross-sections
of the waveguides are rectangular or circular in shape, the
transverse electromagnetic components have analytical ex-
pressions as Fourier-Fourier and Fourier-Bessel expansions,
respectively. On the contrary, if the waveguide modes have no
analytical expressions, numerical methods must be considered
to obtain the complete mode set. In such cases, the Finite Ele-
ment Method (FEM) has been employed to solve Helmholtz’s
equation. The reason for using FEM is its flexibility concerning
the geometry. Matching the tangential electrical and magnetic
field components (1), the GSM of a simple discontinuity is

obtained
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Although the screws have circular cross-sections, an equiva-
lent square cross-section has been used [15] [Fig. 1(b)]. Thus,
the dual-mode structure can be considered as several transverse
discontinuities linked by homogeneous waveguide lengths
leading to a two-dimensional problem (GSM’s computation)
followed by a one-dimensional problem (the link of the
GSM’s).

When the variational principle of Helmholtz’s equation
is employed to solve any arbitrarily shaped homogeneous
waveguide, the finite element formulation can be scalar [16].
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Fig. 1. (a) General block for iris coupling between waveguides in dual-mode
filters. (b) Circular-circular-triseptum discontinuity.

It has been broadly verified that this formulation is spurious
free and that the convergence is very good even if the structure
presents edges. Since the scalar element only gives the axial
field component, £, for TM and H, for TE modes, the
transverse components are calculated from the axial ones there
where the error is minimum [17]. A very important point in
order to develop a CAD is to determine automatically the
FEM mesh from the geometric input data. For example, in the
case of the triseptum circular waveguide (coupling and tuning
screws), the mesh is generated by defining only the radii of
both the circular waveguide and the screws and the depth of
these. When a change is made in any geometric datum, the
mesh is automatically regenerated and the GSM recalculated.

The method of analysis described above has been validated
by studying some simple circuits that include the elemen-
tal DMCWF’s blocks. For irises whose area is very small
compared fo the area of the circular waveguide, artificial inter-
mediate discontinuities of zero length have been introduced.
As a result of this, the number of employed modes is reduced,
and numerical instabilities are avoided [18]. The first analyzed
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Fig. 2. Circular cavity filter response, input and output waveguide WR75

(19.05 mm x 9.525 mm), coupling slots (9.7 mm x 3 mm x 1 mm), cavity
length 100 mm, radius 12 mm. (A A A A) measured; ( ) simulated.

circuit is a circular cavity resonator shown in Fig. 2 that
includes the input and output slots of a DMCWF. Due to the
symmetries of the structure, only TE,,, and TM,,, modes
with vertical perfect magnetic conductor wall and horizontal
perfect electric conductor wall symmetry were considered in
the analysis. Fig. 2 shows the comparison between measured
and computed data. An excellent agreement is observed.

A similar technique has been employed to analyze the
cross-iris coupling between circular waveguide cavities. In
this case, several rectangular waveguides are used as inter-
mediate artificial steps between the cross-iris and the circular
waveguide. In the final artificial step between the cross-iris
and its circumscribed rectangular waveguide, the mode ratio
is chosen as close as possible to the area ratio between them.
This method was applied to analyze circuits like those shown
in [19], [20]. This rule of thumb, which is essential for CAD,
has been extensively verified by measurements. Finally, the
discontinuity between circular triseptum and circular sections
shows a very good convergence due to the fact that the
area ratio is approximately one to one. This consideration is
pointed out by the excellent agreement between measurements
and theoretical results. Fig. 3 represents the measurement and
computed response of a two-pole circular waveguide filter
with three screws inside. The modes are selected using the
criteria established in [21]. Once the different blocks have been
investigated and their convergence behavior controlled, the
process of systematic design for DMCWF’s will be explained.

III. DESIGN METHOD

So far, the design of DMCWF’s have been based on
theoretical curves and expensive trial and error tests. The new
full-wave systematic design avoids these drawbacks applying
the efficiency of MM and the flexibility of FEM. Although the
first synthesis technique was developed by Atia and Williams
[51, the powerful procedure proposed by Rhodes [22] has
been employed. This makes use of the double cross-coupled
network. Since admittance inverter coupling unity reactances
are equivalent to the mutual coupling, the canonical structure
of Atia and Williams is no more than the cross-coupled
network of Rhodes. To obtain the in-line configuration, the
canonical structure must be appropriately processed [23].
Fig. 4 represents the double cross-coupled network of a four-
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Fig. 3. Two-pole circular waveguide filter response, input and output
rectangular waveguide WR75 {19.05 mm x 9.525 mm). coupling slots
(9.7 mm X 3 mm X 1 mm), cavity length 50 mm, radius 12 mm, vertical
screw = 1.74 mm, horizontal screw = 1.64 mm. coupling screw = 2.72 mm.
(A A A A) measured; (: ) simulated.
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Fig. 4. Double cross-coupled network prototype N = 4.

pole filter for which the canonical and in-line structures are the
same. It will serve as an example without loss of generality
when extended to higher orders.

The circuit model input and output admittance couplings
Min, Moy are easily identified with the rectangular-slot-
circular waveguide block. My, and Mj, are the coupling
screws. Mss is the vertical arm of the cross-iris, and M4 is
the cross-coupling, i.e., the horizontal arm. The steps followed
to obtain all geometric dimensions are given below.

A. Theoretical Synthesis of the Filter

Using a synthesis method, the coupling matrix is attained.
Then, every normalized coefficient of this matrix is identified
with its corresponding physical coupling, i.e., input-output
slots, cross-iris arms, and coupling screws of the filter.

B. Calculation of the Initial Sizes of the Input and Output Slots

It is convenient to increase slightly the typical thickness of
the slots because in this way their sensitivity to the mechanical
tolerance is reduced, and the final weight of the filter is not
appreciably increased. For a given coupling value, the width
and length of the slots will be larger because the thickness
is also larger. As a consequence, the mechanization process
is eased, and since the sensitivity is reduced, the adjustment
process is simplified. The thickness and width of the slots
are fixed, and the length is computed in order to obtain the
coupling value. With this strategy, it is necessary to adjust
only one parameter.

To calculate the initial length of the slots, the S9 parameter
of the fundamental mode in the circular waveguide, extracted
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Fig. 5. (a) Equivalent monomode lumped circuit for rectangular-slot-circular
waveguide structure. (b) Equivalent monomode lumped circuit for circu-
lar-cross-irts-circular waveguide structure.

from the GSM of the rectangular-slot-circular waveguide
block, is related to the coupling value My; = Mj, = Moy by
means of an equivalent monomode circuital model (Fig. 5(a)).
The equivalence between the lumped constant circuit and the
microwave circuit is established by applying the equality of
the reactance slope parameter of both circuits [9]. From this
equivalence, the following expressions are deduced:

1—|S22)?
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ol 14+ |522|2 -2 RG[SQQ] 0
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X = Z
1 + |522|2 -2 RG[SQQ] 0
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where Re[] is the real part, Im[] is the imaginary part, Ay, is
the guide wavelength at the center frequency, A, is the free
space wavelength, n is the number of A/2 sections, and X
is the reactance due to the aperture in the cavity. As the So»
parameter depends on the length of the slots, (3) allows the
relation of both the coupling and the length.

C. Calculation of the Initial Dimensions of the Cross-Iris Arms

The above considerations, concerning the thickness and
width of the slots, are also applied to the cross-iris. To
calculate the initial length of the horizontal arm, the Si;
and S5 parameters of the fundamental mode in the circular
waveguide, extracted from the GSM of the circular-cross-iris-
circular waveguide block, are related to its cotresponding cross
coupling value M;,(Mia, Mys, - - -) of the coupling matrix by
means of an equivalent monomode circuital model (Fig. 5(b)).
The equality of the reactance slope parameter has been again
applied, giving
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where X; is the reactance related to the aperture. The length

Zy =
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of the vertical arm is initially taken as the same as the
horizontal arm. Once the length of the horizontal arm has been
calculated, the cross-iris is rotated 90°, and using the same
procedure, the new length of the vertical arm is obtained with
M;,(Mss, Mag, - - -). It has been extensively verified that the
fact of considering the cross-iris as two independent perpen-
dicular slots leads to inaccurate design lengths. The reason lies
in the four singular points belonging to the cross-iris section,
which perturb the electromagnetic field configuration.

D. First Adjustment of the Iris Dimensions
and the Cavity Length

Generally, the radius of the cavity is determined by spurious
mode separation. Therefore, only the cavity length is a design
parameter. The iris apertures produce a foreshortening effect
upon cavity length that must be taken into account. From the
equivalent monomode circuits, an initial value for the size of
the irises has been obtained. A full-wave simulation of the
filter response without coupling and tuning screws allows the
modification of the size of the input and output slots and the
horizontal arms (vertical polarization) as well as cavity length.
The curve of reference to verify it is the theoretical response
of the double cross-coupled network, in which the admittance
inverters representing coupling screws have been eliminated
(M, ;415 = 1,3,---n — 1). Comparing both responses, the
circuital and the full-wave, the sizes are adjusted. By rotating
90 degrees the cross-irises inside the cavities, the same process
is followed to correct the vertical arms. At the end of this step,
all the iris sizes and the cavity lengths are adjusted. When the
screws are inserted in the final step, new higher order mode
interactions will appear and will force the recalculation of the
iris sizes.

E. Calculation of the Initial Depths of the
Coupling and Tuning Screws

The next step calculates the initial depths of the screws
inserted inside the cavity. Although there are two different
cases, the coupling screw and the tuning screw, both are solved
in a similar way. Considering a piece of circular waveguide,
short-circuited in both sides, whose length was calculated in
the previous step, a screw is introduced for tuning vertical or
horizontal polarization. The natural frequencies of this config-
uration can be obtained by solving the equation [24], [25]

det[S + 1] =0 (6)

where S is the GSM of the structure of Fig. 6, and I is
the unit matrix. The lower natural frequency corresponds
to the resonant frequency affected by the screw. Changing
the depth of the screw inside the cavity, a curve representing
frequency-variation versus depth is drawn. Since the length
of the cavity was corrected (step d) to amend the vertical
polarization TEj;3 resonant frequency, only the horizontal
tuning screw is inserted to tune the horizontal polarization
TE113. Thus, a good estimation of the initial depth of the
horizontal tuning screw is obtained. A similar procedure is
used for the screw tilted 45° (the coupling screw). From the
two resonant frequencies corresponding to the insertion of
a perfect electric and magnetic conductor wall (Fig. 6), the
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Fig. 6. Multimode network for calculating the coupling provided by the
screw inserted at a 45° angle and the resonant frequency variation due to
the horizontal tuning screw.

coupling coefficient M;,(Mi2, M34, - -) is calculated [22]

2 _ g2
Mi‘:fe fm' (7)

f2+ 12

A curve showing the relation between the coupling and the
depth of the screw is obtained. Thus, by means of this step, the
initial depths of the coupling and the horizontal tuning screws
are obtained. These dimensions will serve as very good starting
points in the final iterative adjustment.

It must be noted that the calculation of the depths is repeated
for every different cavity, i.e, when the irises that load it are
also different.

F. Tuning and Final Adjustment

The introduction of the screws inside the cavities leads
to the recalculation of the previous dimensions because new
higher order mode interactions appear. However, since the
initial values are close to the definitive ones, a small number
of iterations are required. The adjustment is simplified if
the equivalent double cross-couple network is utilized. The
process is as follows: once a full-wave response of the initial
filter is calculated, its corresponding coupling matrix along
with every resonant frequency are deduced from the lumped
equivalent circuit. By comparing both results, the differences
between the actual and the theoretical coupling values and
the deviations of the resonant frequencies can be found. As
said before, the tuning adjustment is only accomplished on
the horizontal polarization because, once the filter verifies the
isolation, matching, and bandwidth requirements, its center fre-
quency is shifted by shortening or prolonging all the cavities.
Therefore, only one tuning screw per cavity is employed.

The aim of employing the equivalent lumped circuit is to
know how the different coupling and tuning values affect the
response in order to change their corresponding dimensions
in the full-wave simulation. To sum up, a smart optimization
by means of the perfect knowledge of the filter operation is
achieved. This kind of optimization of iris and screw dimen-
sions reduces dramatically the computational time. Finally,
a full-wave simulation of the filter is obtained prior to its
physical realization.
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Fig. 7. Configuration of the designed four-pole dual-mode circular wave-
guide filter. Only one tuning screw per cavity is employed.

IV. RESULTS

The verification of the design method expounded above
has been accomplished by constructing a four-pole elliptic
DMCWEF.

The desired electrical characteristics of the filter are

Center frequency 11.8 Ghz
Bandwidth 100 Mhz
Minimum return losses >20 dB
Out of band rejection >15dB

Fig. 7 represents the designed filter configuration. It is
formed by two circular cavities connected by two identical
slots to the input and output rectangular waveguides. Also, a
cross-iris connects both cavities. The coupling between the two
degenerate modes in each cavity is realized by the coupling
screw and, as explained before, the design only needs the
horizontal tuning screw. For this band and considering the
resonant mode 7713, the diameter of the waveguide is chosen
to obtain the out-of-band spurious as far as possible. Therefore,
the previously fixed values are

Diameter of the cavities 28.0 mm
Thickness of all irises 1.5 mm
Width of the slots 3.0 mm
Width of the both arms of the

Cross-iris 2.0 mm
Diameter of the screws 2.0 mm

The dimensions to calculate are

Length of the cavities Le

Length of the slots (My; coupling) Lg
Length of the horizontal arm

(M4 coupling) Ly
Length of the vertical arm

(Ma3 coupling) Ly
Depth of the coupling screws

(M2 coupling) De
Depth of the horizontal tuning screw Dy

By means of the proposed method, the following values are
calculated:
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Fig. 8. Response of the lumped equivalent circuit of the four-pole filter in
Fig. 7 when the couplings provided by the screws are eliminated ( ).
Full-wave simulation of the filter without screws (—«— - — ).
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Fig. 9. Response of the dual-mode filter without screws. (A A AA)
measured; ( ) full-wave simulated. Dimensions: cavity length 43.87 mm,
radius 12 mm, iris thicknesses 1.5 mm, slot lengths 10.05 mm, slot widths
3.0 mm, arm widths 2.0 mm, horizontal arm length 7.65 mm, vertical arm
length 8.75 mm. )

Step a) The normalized coupling matrix is

0 0.80382 0 —0.42705
A | 080382 0  0.86843 0
0 0.86843 0 0.80382
—0.42705 0 0.80382 0 ,
My =1.03487 O @®)

Step b) Applying (3), the initial length of the slots is Lg =
9.975 mm.

Step ¢) Applying (4), the initial length of the horizontal arm
is Ly = 7.56 mm, and the initial length of the vertical arm
is Ly = 8.74 mm.

Step d) Fig. 8 represents the comparison between the re-
sponse of the lumped equivalent circuit when the coupling
screws (Mqy = M34) are eliminated and the full-wave sim-
ulation after the initial lengths of the slots and the horizontal
arm have been corrected. If M, is substituted by Mas in the
circuit model, and the cross-iris is rotated 90° in the full-wave
simulation, a similar comparison to that in Fig. 8 leads to the
recalculation of the length of the vertical arm. Additionally, a
new cavity length is calculated when adjusting the horizontal
arm length. Fig. 9 shows the comparison between the full-
wave simulation and the measurement when this correction is
accomplished. The final results of this step are Lo = 44.0
mm, Lg = 10.01 mm, Lyz = 7.62 mm, and Ly = 8.80 mm.
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Fig. 11. - Comparison between the theoretical response (—) of the filter
obtained in the synthesis process and the full-wave simulation (—:—-— )
after optimization procedure.

Step e) Fig. 10 shows the relation between the coupling
value and the depth of the coupling screw considering the
length of the cavity computed in the previous step. From this
curve, an initial depth for the coupling screw is deduced,
Do = 3.30 mm. In addition, Fig. 10 shows the relation
between the variation of the resonant frequency of the circular
cavity (Lo = 44.0 mm) and the depth of the horizontal tuning
screw. From this curve is deduced, Dr = 4.16 mm. The
mutual interaction between the tuning and the coupling screws
is minimized by the position in which they are placed in each
cavity (Fig. 7). ,

Step f) The geometrical dimensions previously calculated
are very close to the final ones and are taken as starting points
in a smart optimization process. First, a full-wave simulation is
performed, then the equivalent circuit parameters are modified
to fit the full-wave response. In this way, the dimensions that
must be changed are found, and the process is repeated. Since
the equivalent lumped circuits cannot take into account all the
interactions, the last adjustment is carried out by resorting to
the full-wave simulation only. After a few optimization steps,
the full-wave response verifies the filter characteristics, and the
process is terminated. Fig. 11 shows the comparison between
the full-wave simulation and the theoretical response of the
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Fig. 12. ( ) Measured response of the constructed four-pole elliptic filter, (o @ o ) So; parameter full-wave simulation, and (o o oo) Siy
parameter full-wave simulation.
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Fig. 13.  (——) Measured far out-of-band rejection of the constructed four-pole elliptic filter: (¢ o o &) full-wave simulation.
circuit model. The final dimensions are The designed filter was constructed on brass. The tuning
Length of the cavities Lo = 43.87 mm process in the laboratory was a very fast task as a consequence
Length of the slots Ls = 10.05 mm of the exact computation of the iris dimensions and the
Length of the horizontal arm Ly =7.65 mm reduction of the number of tuning screws. Fig. 12 represents
Length of the vertical arm Ly = 8.75 mm the comparison between the measurement and the full-wave
Depth of the coupling screws D¢ = 3.57 mm simulation in its operational band. The agreement is excel-
Depth of the horizontal tuning lent. Fig. 13 shows the comparison between the wide-band

SCrews Dy = 3.82 mm measurement and the full wave simulation. All the different
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spurious are predicted in their positions and levels. Again,
the agreement between both results is excellent. A whole
simulation of the filter (Fig. 12) with 25 frequency points
consumes about 2 CPU hours in a HP series 9000 model 730.

V. CONCLUSION

A new full-wave method for designing DMCWEF’s, which is
based on the combined MM-FEM, has been presented. Since
the method includes the finite iris thickness and the screws
inside the cavity, the higher mode interaction is rigorously
taken into account. A step-by-step design process, which gives
the initial iris dimensions and the depths of the screws has been
explained. The final adjustment is accomplished by interaction
with the circuital model, making possibie a smart optimization.
The advances of this method are: 1) The out-of-band response
obtained leads to a full prediction of resonant spurious prior
to the filter construction. 2) The final adjustment is simplified
because only two screws per cavity are required, and their
initial positions are known. 3) There is no adjustment of the
iris dimensions, therefore the cost is dramatically lowered. A
four-pole elliptic filter has been designed, and the full-wave
prediction shows excellent agreement with the measurements.
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